In the real number system, the equation $\sqrt{x+3-4 \sqrt{x-1}}+\sqrt{x+8-6 \sqrt{x-1}}=1$ has

  • [KVPY 2012]
  • A

    no solution

  • B

    exactly two distinct solutions

  • C

    exactly four distinct solutions

  • D

    infinitely many solutions

Similar Questions

Complete solution set of the inequality $\left( {{{\sec }^{ - 1}}\,x - 4} \right)\left( {{{\sec }^{ 1}}\,x - 1} \right)\left( {{{\sec }^{ - 1}}\,x - 2} \right) \ge 0$ is

The polynomial equation $x^3-3 a x^2+\left(27 a^2+9\right) x+2016=0$ has

  • [KVPY 2016]

Let $\alpha$ and $\beta$ be the roots of $x^2-x-1=0$, with $\alpha>\beta$. For all positive integers $n$, define

$a_n=\frac{\alpha^n-\beta^n}{\alpha-\beta}, n \geq 1$

$b_1=1 \text { and } b_n=a_{n-1}+a_{n+1}, n \geq 2.$

Then which of the following options is/are correct?

$(1)$ $a_1+a_2+a_3+\ldots . .+a_n=a_{n+2}-1$ for all $n \geq 1$

$(2)$ $\sum_{n=1}^{\infty} \frac{ a _{ n }}{10^{ n }}=\frac{10}{89}$

$(3)$ $\sum_{n=1}^{\infty} \frac{b_n}{10^n}=\frac{8}{89}$

$(4)$ $b=\alpha^n+\beta^n$ for all $n>1$

  • [IIT 2019]

The sum of integral values of $a$ such that the equation $||x\ -2|\ -|3\ -x||\ =\ 2\ -a$ has a solution

Let $a, b, c, d$ be numbers in the set $\{1,2,3,4,5,6\}$ such that the curves $y=2 x^3+a x+b$ and $y=2 x^3+c x+d$ have no point in common. The maximum possible value of $(a-c)^2+b-d$ is

  • [KVPY 2012]